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L INTRODUCTION

In the active area of approximation of convex sets (see, for instance, the
extensive survey of Gruber [6 J), a useful device is to identify sets with their
support functions and to proceed in function-theoretic terms, The
correspondence between the Hausdorff metric and the L, distance between
support functions can be exploited in this way (Weil [10], McClure and
Vitale [8 J, Davis, Vitale, and Ben-Sabar [4], Kenderov [7 J). Other L

I
,

metrics can be defined, as well, and used for approximation (lv1cClure and
Vitale [8 J), Related work on the pth means of support functions appears in
Firey [5]. The purpose of this note is to establish some rcsults relating
these metrics and, in particular, to connect the L" (1 :( f! < Y, l metrics with
the more widely studied L, metric, Our motivation comes from some of
the work cited above and also the study of random sets (e.g., Artstein [1].
Baddeley [2], Vitale [9J), The L 2 metric is attractive in this context
because of the well-developed spectral theory of random functions, We
mention too that certain aspects of Davis [3J are examples of L
approximation,

In the next section, we set some notation and preliminaries. Section 3
contains our main quantitative result (Theorem 2) which gives tight
bounds between the L" (I :( f! <x ) and L, metrics. In the last section, we
use this result to show that the derived metric spaces are closely related
and that the analogue of the classical Blaschke selection theorem holds for
each (Theorem 3 l.

2, PRELIMINARIES

We shall work in R" for arbitrary but fixed d, 2:( d:( 'j" The Euclidean
norm and inner product will be denoted by II' and <', '), rcspectively. On
the unit sphere S" I, we impose unit Lebesgue measure II(' l,
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.'ltd will stand for the space of non-empty compact, convex subsets of Rd.

To each K E fd, we assign a support function S K E C( Sd I) via

SK(e)=max<e, x),
y,= A'

eE Sd I

It is Lipschitz continuous and uniquely paired to K. Other properties are

Sconv:KuL: =max{SK' SL}

The Hausdorff' metric between K and L is

6:r(K,L)=max{sup inf Ix-x'l, sup inf Ix-x'l}

and is equal to sUPeEsd-IISK(e)-Sde)!=IISK-SLllr The other L
1
,

metrics are defined directly on the support functions:

l~p<CfJ.

3. AN INEQUALITY FOR SUPPORT FUNCTIONS

In comparing the metrics, there is an immediate bound in one direction.

THEOREM 1. Let K, LE.X d
. Then 61'(K, L)~6,"-(K, L). Equality is

attained iff one set is a parallel hody ol the other.

Proal The inequality is direct. For equality, 61'(K, L) = 6 x (K, L)¢;>
ISK-SLI =maxISK-SL!¢;>SK-SL=const. Thus if SK=SL +p, where
p > 0, K is the parallel body to L at radius p.

In the other direction, we shall see that there is no bound of the form
C' (5 f ~ 61' for a universal positive constant. While this is familiar from the
general theory of LI' spaces, it is not immediate in the restricted class of
support functions. Indeed, we shall repeatedly see that the particular
properties of support functions lead to quite specialized and often stronger
results than are true in general. In large part, it will be convenient to
proceed by exploiting geometrical arguments.

Our main quantitative result is a complement to Theorem 1 and
establishes a tight bound in the other direction. From it, we will derive our
later results.
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THEOREM 2. Lct K, LEX
d lrith D=diam(KuL). Then

where

l:s:p<y

B(', .) is the heta integral,

sin Oil = [/1',

=1/1+l'c/4,

and

1:s:;' :s: v 4/3

"i 4/3 :s: ;',

)' = D/() , (K L).

Equality is achieved when the tiro sets arc respective/\' a disk and its COflt'l'-\

hull with a point on its normal axis 0/ svmmetry.

Before proceeding to the proof, we note that equality can be achieved for
other pairs of sets. Their description is complicated, however, and, in any
case, the pair indicated is minimal in a sense suggested by the reduction
arguments of the proof.

Proof: An outline of the proof is as follows. Under the conditions

(C I) (), (K, L) = 1,

(C2) diam( K u L) :s: D (D ~ 1 necessarily),

we derive inf 6p (K, L). This will be done by starting with a pair (K L) and
successively modifying it through five steps (K j , L, ), ... , (K5 , L 5 ) so that
(CI) and (C2) are maintained and 6p (K" L;) decreases. At step 5, the
geometry is simple enough to work analytically, and we calculate the
infimum. Finally, the normalization (CI) is removed to produce the
general result.

We begin with K, LEj(d satisfying (el) and (C2). Without loss of
generality, assume that I = () I (K L) = distance from Xu E L to K.

Step I. Let K j = K and L I = conv {K u L: so that K, <;: L I' Recall that
SL,=max{S""SI) so that

O:s: 51, ~ S",:s: lSI ~ S"I
and hence ()1'( K, ' L I ) :s: () p( K. L).

Stcp 2. Let K 2 = K, and set L, = conv{xo , K,}. We have K, <;: L 2 <;: L,
or S",:s:SI,:s:SI, so that ())K 2 , L 2 ):S:()I,(K j • L 1 ).
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Step 3. Without loss of generality, assume that 0 E K2 and Ilxoll == 1. We
symmetrize about the line through the origin and X o: let {((,} A be the sub­
group of orthogonal transformations leaving X o invariant and let m(') be
associated normalized Haar measure. Set K, and L, to be the respective
averaged sets

K, = r (r, K2 m ((!'l. )
',I

L, = r (i"L 2 111(da).
',I

It is clear that rS I (K3, L 3)= I since (i~xo=xo VaEA. For (e2), recall that
diam(K')=maxccsd ,SI\(e)+SI\(-e) for any set K. Set
K~=conv{K2uL,} and K~=conv{K,uL3}'Then

K', = r (i'lK~m(da)
"1

and

diam(K~) = max SI\,(e) + SA:;( -e)
(' E ,\'Ii I

= c~~IX, LJl Sc ,de) m(da) + Ls(' ,d -e) m(da)J

:( r diam((i'lK~) m(da) = diam(K~).
'A

Finally, observe that rS p( K, L) is a convex functional of S 1\ - Sf and so
decreases upon averaging the sets.

Step 4. Let L 4 = L 3 and set K4 = (x E [Rd I x EL 4 and <x, )'0) :( 0 ). The
effect of this is to enlarge K3 to K4 (c;; L4 ) which has a (possibly
degenerate) circular face F in the plane <x, x o) = O. The verifications are
similar to those for steps 1 and 2.

Step 5. Set K,=Fand L,=conv(xo,F}. Note that, for <e,xo);?O,
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and, for <e, x o):::; 0,

RICHARD A. VITALE

Hence, SL,-SK,=SL4-SK4 and (5I'(Ks , L s)=(5I'(K4 , L 4 )·

This concludes the reductions. We recapitulate the final picture: K, is a
disk F in the <x, xo) = 0 plane, and L, is the convex hull of F with the
point Xo (1IxoII = I).

Next we recast the integral

by integrating around circles, i.e., sets of constant <e, xo). The integrand
vanishes, as mentioned above for e 3 <e, xo) :::; 0 and indeed for
e 3 <e, xo) :::; SAe). Put another way, the integrand vanishes for <e, x o) :::;
cos eo where tan eo = 1/R, R being the radius of F. For <e, xo) = cos 0 ~
cos eo, the integrand is (cos e - sin e/tan eo)l'. The (infinitesimal) fraction of
points e on Sd-1 with <e,xo)=cose=a is cp(rx)da=BAl-a 2)(d 3)/2da,

Bd = r(d/2)/J7e r( (d - 1)/2). I can then be rewritten as

f ( sin e) I' Bd '0". . 0

cos e--- cp(a) da=~e J sml'(Oo - 0) sm d
- -0 dO.

8;;,80 tan eo Sill 0 0

It is a simple exercise to show that this is an increasing function of 00 or,
equivalently, a decreasing function of R (recall tan 80 = 1/R). Hence, to
minimize, we should take R as large as possible under the constraint
diam(K, u L,):::; D. Direct trigonometry shows that if I :::; D:::; j473, we
should take R = JD2=l; in this case the diameter of KEL, is achieved
between X o and a point on the boundary of F. If V 4/3 :::; D, we take
R = D/2; in this case, the diameter is between opposite points on the boun­
dary of F. In terms of maximizing 80 , we have

sin 80 = liD,

= I/JI + D 2/4,

1:::; D:::; .)4/3
r-::

.)4/3 ~ D.

Inserting those values and taking a pth root yields the result for the special
case (5oo(K, L) = 1.

It remains to observe that for arbitrary K and L, it is enough to apply
the last result to K' = 1/(5x(K, L)' K and L' = 1/(5 x (K, L)' L.



LI' METRICS FOR COMPACT, CONVEX SETS

4. SOME CONSEQUE"lCES
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The expression for C)K, L) shows that it tends to zero as 00 tends to
zero. This occurs when the point on the axis of symmetry of the disk tends
toward the center of the disk, or, more generally, when
() f (K, L )/diam( K u L) -> O. Hence, there is no universal positive constant
which can be inserted into the inequality. Nevertheless, we shall fJmd that
the metrics are very closely related (Theorem 3).

We begin by producing a morc transparent (and necessarily looser) form
of the inequality.

COROLLARY I. Lct K, L EO ,~." with D = diam(Ku L). Then

wherc

C' K L = I B( p + I, d - I ) TI'
1'( , ) LB(~,(d-I)/2)'D" IJ .

Proof The result follows from inserting the inequality

,.. 00

1." 2,,(00 )= J sin"Osin" 2(Oo-O)dO
o

into the estimate of Theorem 2. This can be derived by induction on d: for
d = 2, the assertion is

,-(Ill sinl'+ 10
I sin!' 0 dO ~ I 0,
'0 p+

which is easily seen by comparison at 0 and ordering of derivatives. For the
induction step, we use the same device: :1" 1,1'(0) = 0 = {3,,+ 1,1'(0). A simple
recursion of integrals yields

It remains to note that sin 00 ~ b x (K, L)/D.
In the next corollary, we depart from viewing K and L symmetrically

and obtain a local estimate.
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COROLLARY 2. Let K, L E .x· d
• Then

where D L = diam( L), and

en _I B( p + I, d - I )1 1
{'

{' - LB(~, (d - I )/2 )J
Proof Recall that for any two sets K and L. diam(Ku L):::;

diam(L) + 26 x (K, L). Inserting this into the previous inequality yields the
result.

We are now prepared to state that the spaces generated by the various
metrics are closely related. It is natural to include a characterization of
compact sets which essentially generalizes Blaschke's selection theorem to
p< 00.

THEOREM 3. All of the 6{' metrics, I :::; p:::; 00, induce the same topology
on ,%d and yield complete metric spaces in which closed, hounded sets arc
compact.

Proof Theorem I and Corollary 2 imply that for fixed L and a
sequence K/l' 6 x(K/l' L) -> a iff 6{'(K,J' L) -> O. Accordingly, the generated
topologies are the same.

The compactness and completeness statements are standard for 6 x • For
p < 00 and compactness, observe that 6{' and 6 x: yield the same compact
sets and the same closed, bounded sets. For p < x and completeness, it suf­
fices to note that the closure of the set of points in a Cauchy sequence is
bounded and hence compact.
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